test report

Title:

The Fire Resistance Performance Of Suspended Ceiling Assembly Incorporating Light Fittings Protecting Loadbearing I Section Steel Beams In Accordance With BS 476: Part 23: 1987, Clause 5

WF Report No:

148051

Date: 10th November 2005

Notified Body No: 0833

Summary

Objective	To determine the fire resistance performance of a specimen of a suspended ceiling incorporating light fittings, when tested in accordance with BS 476: Part 23: 1987, Clause 5.				
Summary of Tested Specimens	The specimen had nominal dimensions of 4000 mm long by 3000 mm wide and consisted of an exposed metal tee suspended grid system. The main runners of the grid system spanned the 4000 mm length of the furnace chamber. A single layer of square edge ceiling tiles referenced "Prima – BP9121M3B/01', nominally 595 mm wide by 595 mm long by 16 mm thick, was laid into the grid system. The ceiling was installed such that an air cavity with a depth of approximately 375 mm was formed above it.				
	The ceiling incorporated four downlights of differing diameters referenced 'FR1004 LV', 'FR1003 S LV', 'FR1002 S LV' and FR1001 S LV'				
	The effective protection offered by the suspended ceiling to the loadbearing steel beams is evaluated by the use of the loadbearing capacity failure criterion specified in BS 476: Part 20: 1987. The result obtained was as follows:				
Test Results:					
Loadbearing capacity	•				
		The test was discontinued after a period of 109 minutes			
	Date of Test	13 th July 2005			

This report may only be reproduced in full. Extracts or abridgements of reports shall not be without permission of warringtonfire

Signatories

Responsible Officer S. Baker* (Technical Officer)

NN

Approved A. Kearns* (Technical Consultant)

* For and on behalf of warringtonfire.

Report Issued

Date 10th November 2005

This copy has been produced from a .pdf format electronic file that has been provided by warringtonfire to the sponsor of the report and must only be reproduced in full. Extracts or abridgements of reports must not be published without permission of warringtonfire. The original signed paper version of this report is the sole authentic version. Only original paper versions of this report bear authentic signatures of the responsible warringtonfire staff.

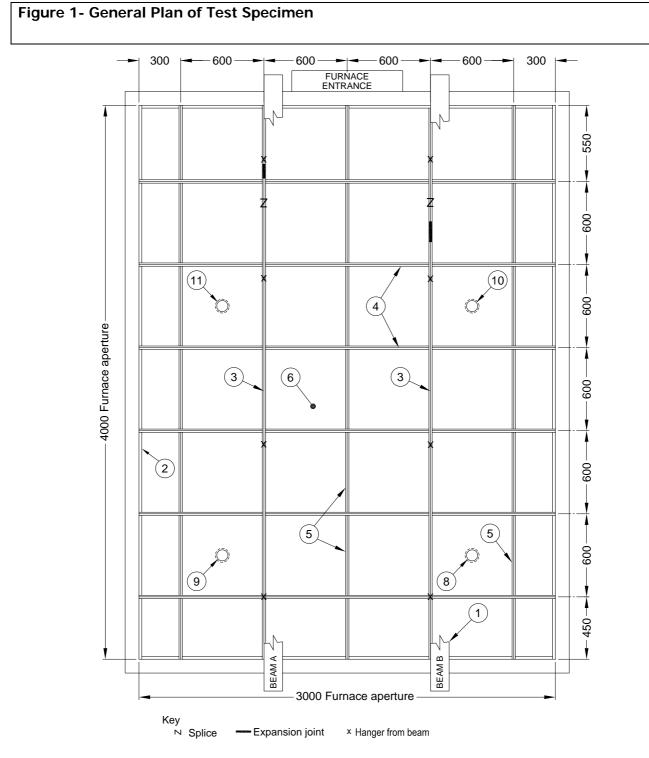
CONTENTS

PAGE NO.

SUMMARY	2
SIGNATORIES	
TEST PROCEDURE	5
TEST SPECIMEN	6
SCHEDULE OF COMPONENTS	
INSTRUMENTATION	15
TEST OBSERVATIONS	
TEST PHOTOGRAPHS	
LOAD CALCULATION	
TEMPERATURE AND DEFLECTION DATA	20
PERFORMANCE CRITERIA AND TEST RESULTS	30
ONGOING IMPLICATIONS	30
CONCLUSIONS	

Page 5 of 31

Test Procedure


Introduction The specimen tested was of a suspended ceiling. The test was conducted in accordance with Clause 5 of BS 476: Part 23: 1987, 'Methods for determination of the fire resistance of elements of construction'. This test report should be read in conjunction with that Standard and with BS 476: Part 20: 1987, 'Methods for determination of the fire resistance of elements of construction (general principles)'.

The specimen was judged on its ability to provide fire protection to hot rolled steel 'I' section beams of serial size 203mm by 133mm by 30kg/m to BS EN 10025: 1993, Grade S275, each having a nominal section factor of 210m ⁻¹ (three sided exposure).

- **Fire Test Study Group/EGOLF** Certain aspects of some fire test specifications are open to different interpretations. The Fire Test Study Group and EGOLF have identified a number of such areas and have agreed Resolutions which define common agreement of interpretations between fire test laboratories which are members of the Groups. Where such Resolutions are applicable to this test they have been followed.
- Instruction to
testThe test was conducted on the 13th July 2005 at the request of Sealite Company
Limited, the sponsor of the test.
- Test Specimen
ConstructionA comprehensive description of the test construction is given in the Schedule of
Components. The description is based on a detailed survey of the specimens and
information supplied by the sponsor of the test.
- **Installation** The ceiling assembly and light fittings were installed by a representatives of the client within a refractory concrete lined, steel support frame on the 12th July 2005.
- **Sampling** warringtonfire was not involved in any selection or sampling procedures of the assembly or any of its components.
- Loading A total load of 8134 kg was applied to the beam by four point loads produced by hydraulic rams. The rams were positioned at distance 1/8, 3/8, 5/8 and 7/8 of the span of the beam, as shown in Figure 2. The applied load, together with the dead load, was calculated to develop the maximum permissible stress in bending. The load was kept constant for 108 minutes, after which time it was removed from the beam.

Test Specimen

Do not scale. All dimensions are in mm

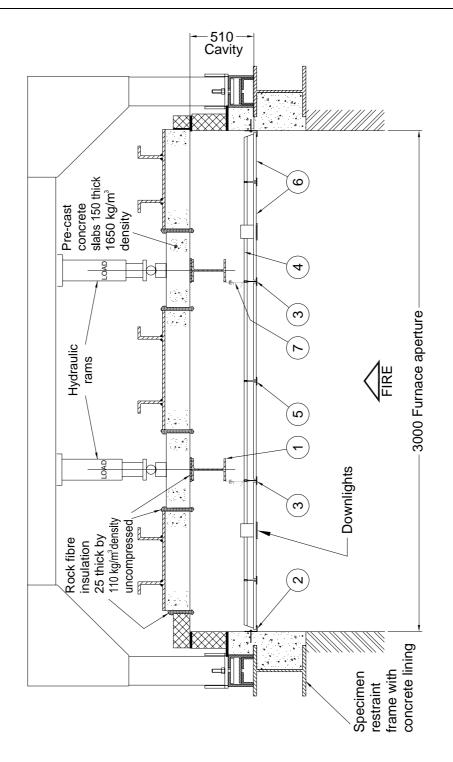
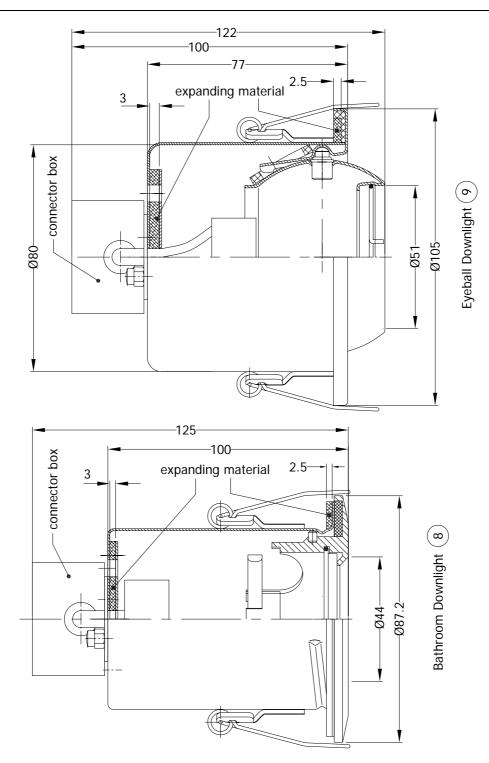
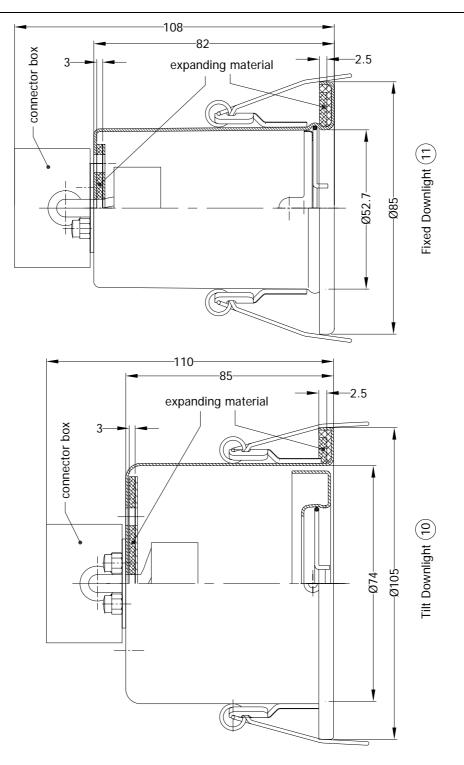

Page 7 of 31

Figure 2 – Longitudinal Section Steel roller bearing to beams]] (m Pre-cast concrete slabs 150 thick 1650 Kg/m^³ density 1050 (4) Ъþ అ 4000 Fumace aperture -Hydraulic rams 4200 Span 1050 -FIRE - Downlights Ъþ Rock fibre insulation 25 thick by 110 Kg/m³density uncompressed - 1050 -(~ -Ъþ (7) Specimen restraint frame with concrete lining – 510 – Cavity

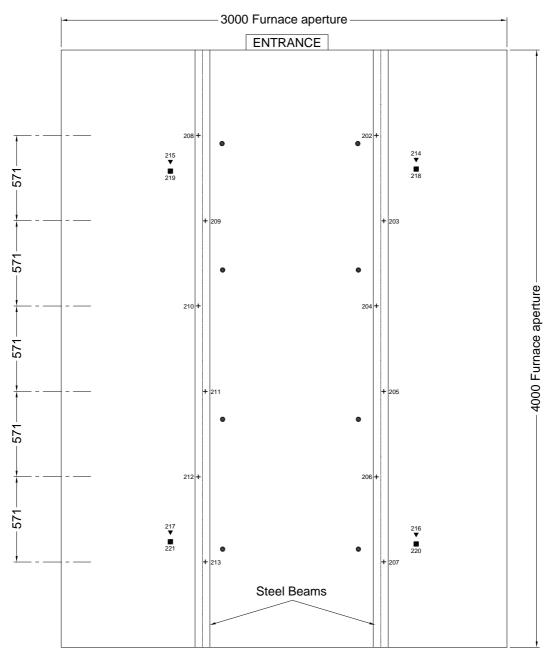
Page 8 of 31


Figure 3 – Lateral Section

Page 9 of 31


Figure 4 – Details of Downlights

Page 10 of 31


Figure 5 – Details of Downlights

Page 11 of 31

Figure 6 – Plan of Thermocouple Positions

Key to thermocouple positions

- Air at mid-cavity height
 Upper face of ceiling membrane
 Furnace 100mm below ceiling
 Lower flange of steel beam

Do not scale. All dimensions are in mm

Numbers adjacent to thermocouples are WFRC logging numbers

Schedule of Components

(Refer to Figures 1 to 4)(All values are nominal unless stated otherwise)(All other details are as stated by the sponsor)

(All other details are as stated by the sponsor)				
Item	Description			
1. Steel Beams				
Туре :	I Section beam			
Material :	Mild steel to BSEN10025: 1990, Grade S275			
Size				
i. overall :	203 mm x 133 mm			
ii. weight :	30 kg/m			
iii. span :	4200 mm			
2. Perimeter Trim				
Manufacturer :	Armstrong World Industries Inc.			
Reference :	BPT1932H.			
Material :	Mild steel angle with steel capping.			
Overall size :	19 mm wide x 32 mm high			
Details of Fixings	u u u u u u u u u u u u u u u u u u u			
i. reference :	Masonry nails			
ii. material :	Galvanised/zinc			
iii. size :	3 mm diameter x 25 mm long			
iv. centres :	450 mm.			
3. Main Tee				
Manufacturer :	Armstrong World Industries Inc.			
Reference :	Prelude 31 40 32 A			
Material :	Hot dipped galvanised mild steel with a mild steel			
	capping to the bottom flange.			
Overall size :	24 mm wide x 42.5 mm high x 3600 mm manufactured			
	length.			
Grid centres :	1200 mm.			
Expansion allowance :	3 mm between perimeter trim and ends of tees			
Fixing method :	Ends were laid onto flanges of perimeter trim and			
	suspended from steel beams at 1200 mm centres with			
4. Cross Tee	wire hangers (item 7) at positions shown on Figure 1.			
A. Cross ree Manufacturer :	Armstrong World Industries Inc.			
Reference :	Prelude XL^2 , 31 30 51 B			
Material :	Hot dipped galvanised mild steel with a mild steel			
Material .	capping to the bottom flange.			
Overall size :	24 mm wide x 38 mm high x 1200 mm long.			
Grid centres :	600 mm.			
Expansion allowance :	3 mm between perimeter trim and ends of tees			
Fixing method :	Click fitted into slots along main-tees and laid onto			
J	flanges of perimeter trim			

flanges of perimeter trim.

<u>Item</u>

5. Secondary Cross Tee

Manufacturer	
Reference	
Material	

Overall size Grid centres Expansion allowance Fixing method

6. Tiles

Manufacturer Reference Pattern Material Thickness Overall size Edge shape Fixing method

7. Wire Hanger

Material

Diameter

8. Downlight

Manufacturer Reference Type Material Overall size Fixing method Details of expanding material i. manufacturer ii. reference iii. material

9. Downlight

Manufacturer
Reference
Туре
Material
Overall size
Fixing method
Details of expanding material

Description

- Armstrong World Industries Inc.
- : Prelude XL^2 , 31 20 21 A
- : Hot dipped galvanised mild steel with a mild steel capping to the bottom flange.
- 24 mm wide x 30 mm high x 600 mm long.
- : 1200 mm.

:

:

- : 3 mm between perimeter trim and ends of tees
- : Click fitted into slots along cross-tees and laid onto flanges of perimeter trim.
 - Armstrong World Industries Inc.
- Prima BP9121M3B/01
- : Fine Fissued.
 - Mineral fibre.
- : 15 mm
 - 595 mm x 595 mm
- : Square.
- : Laid onto flanges of perimeter trim, main-tees and cross-tees using 4 no. hold down clips per tile reference 'universal AH002'.
- Hot dipped galvanised wire complete with steel caddy clip reference BE-9-12
- 2 mm

:	Sealite Company Ltd.
:	FR1004 LV
:	Low voltage bathroom downlight
:	Steel and glass
:	87.2 mm diameter
:	Retained by 2 no. spring steel clips
:	Sealite Company Ltd.

: IS001

:

- : Intumescent fibrous sheet, ceramic fibre sheet, intumescent graphite, polyvinyl alcohol.
- Sealite Company Ltd.
- : FR1003 S LV
 - Low voltage eyeball downlight
- : Steel and glass
 - : 105 mm diameter
- : Retained by 2 no. spring steel clips
- : Details as Item 8

Page 14 of 31

<u>Item</u>

10. Downlight

Manufacturer Reference Type Material Overall size Fixing method Details of expanding material

11. Downlight

Manufacturer	:	Sea
Reference	:	FR1
Туре	:	Low
Material	:	Stee
Overall size	:	85 r
Fixing method	:	Reta
Details of expanding material	:	Deta

Description

- : FR1002 S LV
- : Low voltage tilt downlight
- : Steel and glass
- : 105 mm diameter
- : Retained by 2 no. spring steel clips
- : Details as Item 8
 - Sealite Company Ltd.
 - FR1001 S LV
 - Low voltage fixed downlight
- : Steel and glass
- 85 mm diameter
- Retained by 2 no. spring steel clips
- Details as Item 8

Instrumentation

General

The instrumentation was provided in accordance with the requirements of the Standard.

- **Furnace** Eight thermocouples, distributed over a plane 100 mm from the underside of the ceiling, were provided to monitor the temperature of the furnace atmosphere. The furnace was controlled so that its mean temperature complied with the requirements of BS 476: Part 20: 1987, Clause 3.1.
- **General** Thermocouples were provided to monitor the unexposed surface of the specimens and the output of all instrumentation was recorded at no less than one minute intervals as follows:

Thermocouples
202 to 207 Beam A
and 208 to 213
Beam BAt twelve positions, six uniformly distributed along the length of each 'I' beam,
to record the steel temperature. The thermocouples were equally spaced and
positioned on the inside of the lower flange of each beam, mid-way between
the web and the toe of the flange and staggered either side of the beam's
web.

Thermocouples 214
to 217At four positions on the upper surface of the ceiling tiles, one approximately
positioned in each of the four quadrants of the ceiling.

Thermocouples 218
to 221At four positions mid-height of the air cavity within the assembly, coincident
with the positions of the thermocouples fixed to the ceiling tiles

The locations and reference numbers of the various unexposed surface thermocouples are shown in Figure 6.

Deflection Linear deflection transducers were provided at mid-span on the unexposed surface of each loaded beam to record their deflection.

Furnace Pressure The atmospheric pressure within the furnace chamber was controlled to maintain equilibrium relative to the atmospheric pressure of the laboratory at a position 100 mm below the soffit of the ceiling.

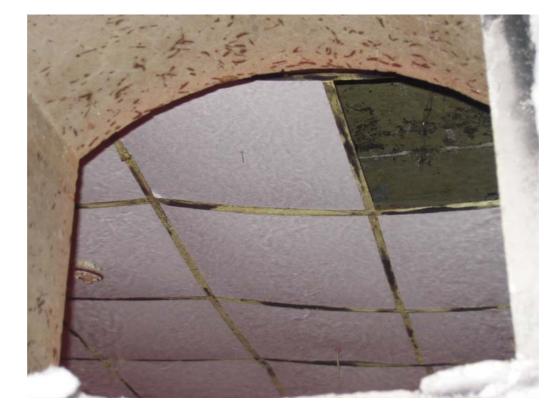
Test Observations

Time		All observations are from the exposed face unless noted otherwise.	
mins secs		The ambient air temperature in the vicinity of the test construction was 16°C at the start of the test with a maximum variation of 1°C during the test.	
00	00	The test commences.	
10	00	All tiles remain in place, ceiling remains flat in appearance.	
25	00	All ceiling tiles remain in place.	
30	00	Loadbearing capacity criteria continues to be satisfied.	
45	00	The corners of some of the tiles have started to lift slightly.	
47	30	All tiles including ones with light fittings remain attached.	
55	00	All tiles remain in place.	
60	00	Loadbearing criteria remains intact.	
66	30	Tiles on the right centre run as viewed from entrance have sagged slightly, enough for a through gap into air cavity.	
69	9 10 The tile continues to sag, through gap approximately 25-35mm. Other tiles ha continued to lift at corners.		
82	00 The tile has now sagged approximately 100-150mm on one edge, but still all til remain in place.		
89	30	Two complete edges of the tile now detached but the tile remains in place.	
90	00	Load bearing criteria remains intact.	
105	00	All tiles with light fittings remain in place.	
105	30	The first tile has now fully detached.	
108	53	Load bearing failure is deemed to occur.	
109	10	The test is discontinued. All tiles housing light fittings remain intact.	

Page 17 of 31

Test Photographs

The exposed face of the test construction prior to testing


The exposed face of the test construction after testing

Page 18 of 31

The exposed face of the test construction after testing

Load Calculation

Depth of section (D)	:	207 mm	
Breadth of section (B)	:	133 mm	
Thickness of flange (T)	:	9.4 mm	
Thickness of web (t)	:	6.3 mm	
Mass per metre (m)	:	284.7258 N/m	
Moment of inertia (I)	:	$2.792551E+07 \text{ mm}^4$	
Distance of neutral axis to base of beam (y)	:	103.5 mm	
Effective span of the beam (L)	:	4200 mm	
Maximum allowable bending stress to BS 44	9: Part 2	2: 1969, Table 2	
f	=	165 N/mm ²	
Percentage of allowable bending stress requ	ired dur	ring the test	
f1	=	100%	
Required bending moment	=	$fI/y = wL^2/8 Nmm$	
Therefore w	=	8f1I/yL ²	
where w	=	load per metre in N/m	
W	=	8x165x2.792551E+07 /101.5x4200x4200	
W	=	20189.99 N/m	
Concrete topping slab			
Depth	=	140 mm	
Width	=	400 mm	
Mass per metre	=	906.444 N/m	
Total self weight of beam and topping	=	1191.17 N/m	
Required imposed load to produce required			
bending stress	=	20189.99 – 1191.17 N/m	
5	=	18998 N/m	
Therefore total imposed load	=	8134 kg	
·			
Using four point loads at $1/8$, $3/8$, $5/8$ and $7/8$	span ea	uivalent to wL/4.	

Point loads required	=	2033 kg
Calculation made by		Checked by

S Baker Technical Officer Fire Resistance Department

S Hankey Technical Consultant For and on behalf of **warringtonfire**

Temperature and Deflection Data

Mean Furnace Temperature, Together With The Temperature/Time Relationship Specified In The Standard

Time	Specified	Actual
TITIC	Furnace	Furnace
Mins	Temperature	Temperature
111115		-
0	Deg. C	Deg. C
0	20	31
5	576	561
10	678	663
15	739	735
20	781	774
25	815	815
30	842	838
35	865	861
40	885	875
45	902	903
50	918	917
55	932	930
60	945	944
65	957	954
70	968	964
75	979	980
80	988	991
85	998	998
90	1006	1005
95	1014	1018
100	1022	1026
105	1029	1028
109	1035	1017

Page 21 of 31

Time	T/C	T/C	T/C	T/C	T/C	T/C	Mean
	Number	Number	Number	Number	Number	Number	Temperature
Mins	2	3	4	5	6	7	-
	Deg. C						
0	21	22	22	22	22	22	22
5	25	28	29	31	29	29	29
10	57	61	66	65	67	60	63
15	94	103	115	110	115	99	106
20	136	144	161	153	162	141	150
25	172	181	198	190	201	177	187
30	205	214	232	224	234	209	220
35	235	246	264	254	264	238	250
40	265	276	296	284	292	265	280
45	296	309	325	313	320	290	309
50	325	338	353	341	346	315	336
55	353	366	378	367	371	339	362
60	376	388	399	388	390	360	384
65	397	407	418	407	409	380	403
70	416	424	434	423	426	398	420
75	431	438	447	437	442	416	435
80	445	452	462	451	461	438	452
85	459	466	476	466	481	463	469
90	473	480	489	482	505	498	488
95	489	492	505	502	537	539	511
100	501	505	522	525	566	570	532
105	514	519	541	546	593	597	552
109	535	541	570	573	643	633	583

Individual And Mean Temperatures Recorded On Beam A

							1
Time	T/C	T/C	T/C	T/C	T/C	T/C	Mean
	Number	Number	Number	Number	Number	Number	Temperature
Mins	8	9	10	11	12	13	
	Deg. C						
0	24	25	25	*	25	25	25
5	32	34	33		30	30	32
10	63	70	81		64	63	68
15	102	115	133		113	101	113
20	144	158	182		164	147	159
25	180	196	224		207	185	198
30	214	233	260		244	217	234
35	245	268	293		274	246	265
40	273	300	322		300	273	294
45	301	330	350		326	299	321
50	327	357	377		350	324	347
55	352	382	401		376	349	372
60	374	402	421		396	370	393
65	395	420	440		419	392	413
70	413	436	455		443	416	433
75	428	451	468		465	450	452
80	443	465	482		488	490	474
85	457	479	495		514	530	495
90	471	492	509		543	575	518
95	485	507	522		571	611	539
100	499	521	536		595	636	557
105	513	537	550		626	666	578
109	314	558	577		690	716	571

Individual And Mean Temperatures Recorded On Beam B

* Thermocouple Malfunction

Time	T/C	T/C	T/C	T/C	Mean
11110	Number	Number	Number	Number	Temperature
Mins	14	15	16	17	remperature
	Deg. C				
0	26	23	24	24	24
5	72	67	72	77	72
10	205	191	205	231	208
15	298	293	291	313	299
20	338	337	329	355	340
25	367	368	358	375	367
30	381	384	371	383	380
35	388	392	381	394	389
40	400	404	395	410	402
45	417	423	416	430	422
50	437	443	437	448	441
55	454	460	454	465	458
60	466	472	466	475	470
65	479	487	479	489	484
70	492	504	490	502	497
75	506	522	502	515	511
80	522	547	516	529	529
85	536	576	528	542	546
90	557	604	540	555	564
95	587	624	551	567	582
100	614	641	562	582	600
105	637	665	576	595	618
109	659	*	592	611	621

Individual Temperatures Recorded On The Upper Surface Of The Ceiling Tiles

* Thermocouple Malfunction

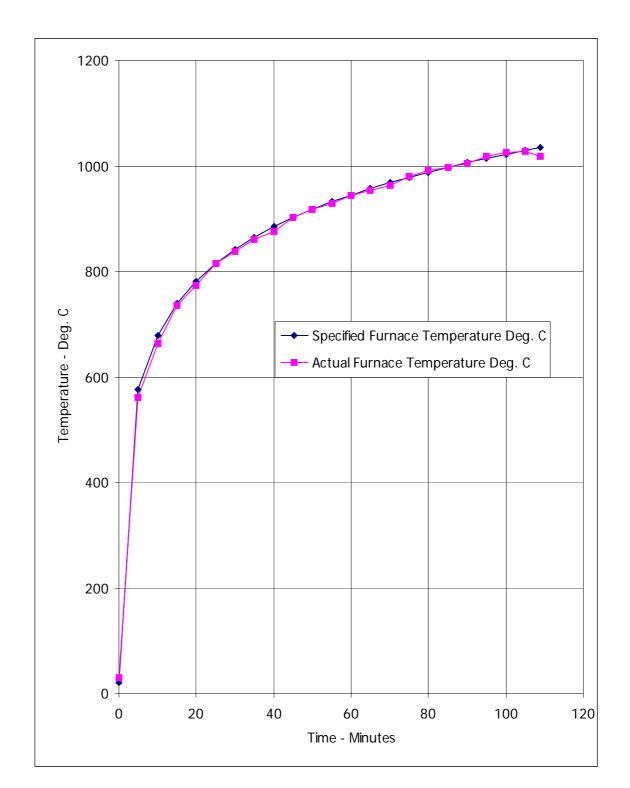
Time	T/C	T/C	T/C	T/C	Mean
	Number	Number	Number	Number	Temperature
Mins	18	19	20	21	
	Deg. C				
0	24	23	24	23	24
5	46	64	62	89	65
10	97	152	181	211	160
15	122	196	234	251	201
20	143	229	252	274	225
25	157	242	267	285	238
30	173	259	283	298	253
35	187	283	309	319	275
40	201	299	325	335	290
45	216	317	344	352	307
50	232	340	366	372	328
55	247	359	385	389	345
60	264	376	394	405	360
65	277	392	409	418	374
70	295	415	419	429	390
75	311	456	424	443	409
80	331	502	433	456	431
85	351	541	442	469	451
90	399	575	454	482	478
95	431	588	464	495	495
100	462	600	471	504	509
105	490	626	481	518	529
109	517	863	487	537	601

Individual Temperatures Recorded Within The Air Cavity

Page 25 of 31

Central Vertical Deflection Of Beam A

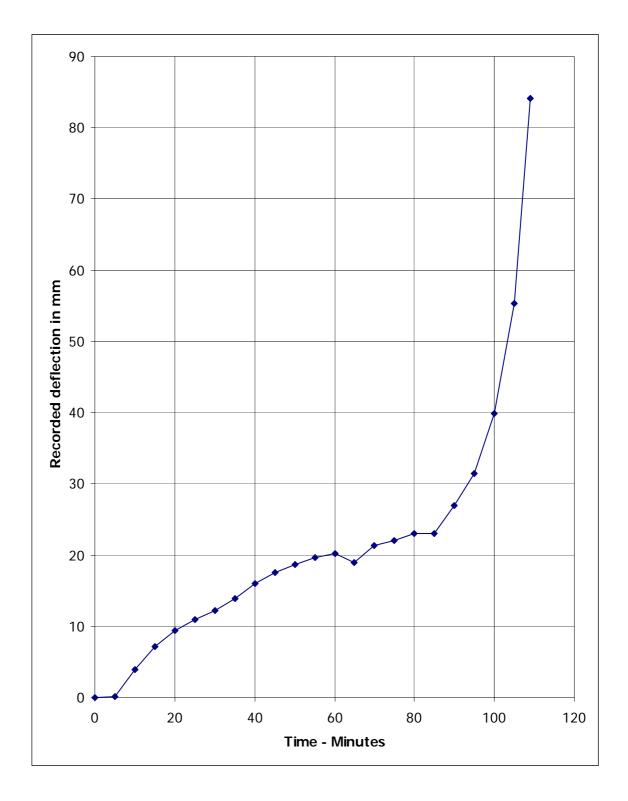
Time	Central	Deflection
	Vertical	
Mins	Deflection	Rate
	mm	mm/min
0	0	0
5	0	0
10	4	0
15	7	0
20	9	0
25	11	0
30	12	0
35	14	1
40	16	0
45	18	0
50	19	0
55	20	0
60	20	0
65	19	0
70	21	0
75	22	0
80	23	1
85	23	3
90	27	0
95	31	1
100	40	2
105	55	3
109	84	7



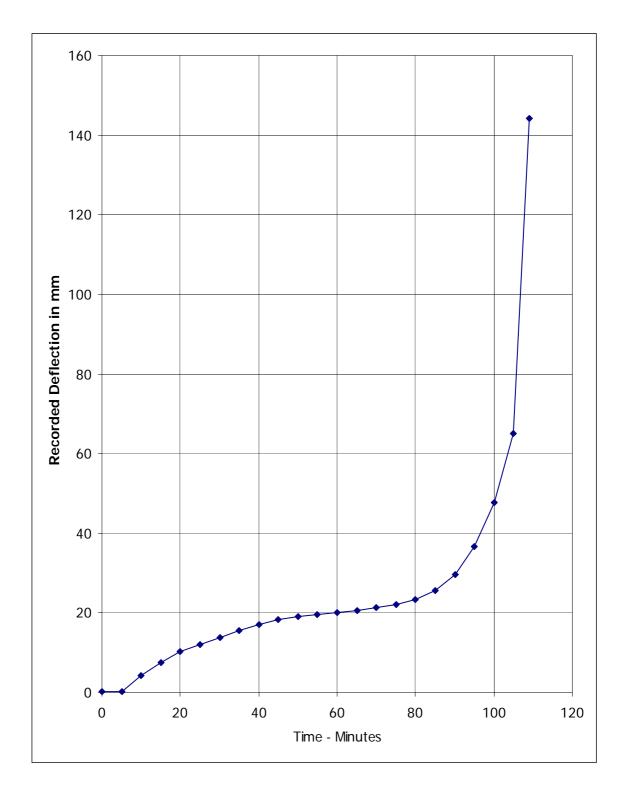
Page 26 of 31

Central Vertical Deflection Of Beam B

Time	Central	Deflection	
	Vertical	2 0110011011	
Mins	Deflection	Rate	
	mm	mm/min	
0	0	0	
5	0	0	
10	4	0	
15	8	1	
20	10	0	
25	12	0	
30	14	0	
35	16	0	
40	17	0	
45	18	0	
50	19	0	
55	20	0	
60	20	0	
65	21	0	
70	21	0	
75	22	0	
80	23	0	
85	26	0	
90	30	1	
95	37	2	
100	48	2	
105	65	4	
109	144	23	



Graph Showing Mean Furnace Temperature, Together With The Temperature/Time Relationship Specified In The Standard


Page 28 of 31

Central Vertical Deflection Of Beam A

Page 29 of 31

Central Vertical Deflection Of Beam B

Performance Criteria and Test Results

Loadbearing Capacity The maximum allowable deflection and the maximum allowable rate of deflection for the specimen, as specified by BS 476: Part 20: 1987, are calculated as 210 mm and 8.9 mm per minute respectively. The maximum allowable rate of deflection criteria is not applicable until the deflection exceeds 1/30th of the span (i.e. 140 mm). This criterion was satisfied for a period of 108 minutes.

Ongoing Implications

Limitations The results relate only to the behaviour of the specimen of the element of construction under the particular conditions of test. They are not intended to be the sole criteria for assessing the potential fire performance of the element in use, nor do they reflect the actual behaviour in fires.

The test results relate only to the specimen tested. Appendix A of BS 476: Part 20: 1987 provides guidance information on the application of fire resistance test and the interpretation of test data. Application of the results to assemblies of different dimensions or incorporating different components should be the subject of a design appraisal.

Review The specification and interpretation of fire test methods are the subject of ongoing development and refinement. Changes in associated legislation may also occur. For these reasons it is recommended that the relevance of test reports over five years old should be considered by the user. The laboratory that issued the report will be able to offer, on behalf of the legal owner, a review of the procedures adopted for a particular test to ensure that they are consistent with current practices, and if required may endorse the test report.

Conclusions

Evaluation against objective

A specimen of an suspended ceiling incorporating light fittings protecting loadbearing steel beams has been subjected to a test in accordance with BS 476: Part 23: 1987, Clause 5, to determine its contribution to the fire resistance of steel beams.

The specimen satisfied the performance requirements specified in the Standard for the periods stated below:

Loadbearing Capacity : 108 minutes

