16th Edition (reference only) – NOW superseded by the 17th Edition IEE Regulations.

chapter 5

chapter 6

  5.1 - The earthing principle 5.6 - Protective multiple earthing (PME)
  5.2 - Earthing Systems 5.7 - Earthed concentric wiring
  5.3 - Earth fault loop impedance 5.8 - Other protection methods
5.4 - Protective conductors 5.9 - Residual current devices (RCDs)
5.5 - Earth electrodes

5.10 - Combined functional and protective

5.1.1 - What is earthing?

The whole of the world may be considered as a vast conductor which is at reference (zero) potential. In the UK we refer to this as 'earth' whilst in the USA it is called 'ground'. People are usually more or less in contact with earth, so if other parts which are open to touch become charged at a different voltage from earth a shock hazard exists (see {3.4}). The process of earthing is to connect all these parts which could become charged to the general mass of earth, to provide a path for fault currents and to hold the parts as close as possible to earth potential. In simple theory this will prevent a potential difference between earth and earthed parts, as well as permitting the flow of fault current which will cause the operation of the protective systems.

The standard method of tying the electrical supply system to earth is to make a direct connection between the two. This is usually carried out at the supply transformer, where the neutral conductor (often the star point of a three-phase supply) is connected to earth using an earth electrode or the metal sheath and armouring of a buried cable. {Figure 5.1} shows such a connection. Lightning conductor systems must be bonded to the installation earth with a conductor no larger in cross-sectional area than that of the earthing conductor.

Fig 5.1 - Three-phase delta/star transformer
showing earthing arrangements


Return to top of page

Extracted from The Electricians Guide Fifth Edition
by John Whitfield

Published by EPA Press Click Here to order your Copy.

Click here for list of abbreviations